
EECS 4408 System Design of a Search
Engine

Winter 2021
Lecture 10: The frontier, hashing and the index

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. RAII.
3. The frontier.
4. Hashing.
5. The index.

2

Agenda

1. Course details.
2. RAII.
3. The frontier.
4. Hashing
5. The index.

3

details
1. Two-day extensions on the HtmlParser HW available on request.
2. The Hashing homeworks published. These are critical to understanding

how you will build your inverted word index as a huge memory-mapped
data structure and hash table on disk.

3. At this point, you should be able to:
a. Read pages over HTTP and HTTPS.
b. Extract words and links. Not crashing is more important than getting

every page, word or link.
4. Most teams are probably not yet dealing with redirects, chunking or gzip

content, the frontier, robots.txt, or page content (e.g., blacklisting porn).
5. I am reading your plans now and will open meeting slots RSN.
6. Today starts the shift from OS stuff to search engine internals. Will

return later to do the web server.

4

LinuxGetUrl/Ssl
The HW ask that you strip off the entire HTTP header (different than the version I
demo).
Can you assume that if you do a recv() with a large buffer, that the \r\n\r\n marking
the blank line marking the end of the header will be there?
Can you assume that those 4 characters will appear contiguously in single recv()?
Could they be split across multiple recv() calls?
Why is that?
recv() can only return whatever’s arrived. The server can write data in whatever size
chunks it likes (a socket looks like a stream to it also) and the data is being packetized
and possibly sent over different paths on the internet.
As a great philosopher once observed: You can’t always get what you want. (But if you
try sometimes, well, you might find you get what you need.)
So, how do you solve this?

5

Simple state machine

6

const char *endofHeader = "\r\n\r\n";
const char *p, *nextmatch = endofHeader;
bool skipping = true;
while ((bytes = recv(s, buffer, sizeof(buffer), 0)) > 0)

if (skipping)
{
for (p = buffer; p < buffer + bytes; p++)

if (*p == *nextmatch)
{
// Advance to the next char to match.
// If at the end, stop skipping and
// write out the rest of the buffer.
}

else
// start over if not a match.
nextmatch = endofHeader;

}
else

write(1, buffer, bytes);

Agenda

1. Course details.
2. RAII.
3. The frontier.
4. Hashing
5. The index.

7

RAII

RAII = Resource acquisition is initialization.

Basic idea: Define a class with a constructor that acquires any
lock you need. The destructor frees the lock.

Takes advantage of the C++ guarantee that the destructor will
always run, even if a C++ exception is thrown that causes the
block to exit.

8

9

#include <pthread.h>
#include <cassert>

class CriticalSection
{
private:

bool locked;
pthread_mutex_t *mutex;

public:

// Take the lock.
void Take()

{
assert(!locked);
pthread_mutex_lock(mutex);
locked = true;
}

// Release the lock.
void Release()

{
assert(locked);
pthread_mutex_unlock(mutex);
locked = false;
}

// Constructor takes the lock.
CriticalSection(pthread_mutex_t *mutex) :

locked(false), mutex(mutex)
{
Take();
}

// Destructor releases the lock.
~CriticalSection(pthread_mutex_t *mutex)

{
if (locked)

Release();
}

};

// Usage.
// Create the mutex.
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, nullptr);

// Lock when needed.
if (needLock)

{ CriticalSection lock(&mutex);
// do something
:
// Lock released automatically
}

Agenda

1. Course details.
2. RAII.
3. The frontier.
4. Hashing.
5. The index.

10

Crawler
1. Manage a frontier of new links to be crawled.
2. Decide what will or will not be crawled and in what order.
3. Keep track of what’s already been crawled.
4. Read pages over HTTP and HTTPS.
5. Obey robots.txt files.
6. Deal with redirects.

All of this has to be highly multithreaded so you don’t wait on slow
sites, instead overlapping them.
You may also want to spread it across multiple machines.

Crawler

Typically maintains pool of worker processes or threads
to read and parse webpages.

Each worker retrieves the file and queues it for the
HTML parser which creates an object.

The resulting stream of objects are then passed to the
Index builder.

The frontier
1. Basic problem: A very large list of URLs that you have not yet

crawled. What should you crawl next?

2. Some links are obviously better than others, e.g., .edu vs. .biz.

3. You don’t want to DOS anyone.

4. Some pages are prohibited by robots.txt, meaning you will need
to cache this for each domain.

5. If you are crawling on multiple machines, you will need to decide
how to split up the work to avoid duplicate crawling but combine
the results.

6. Just because you crawled a page doesn’t mean you want to index
it or follow any of its links. You may want to blacklist it.

13

Managing the frontier

1. Should crawling be a depth or breadth-first search of the
web?

2. How would you decide whether to add a link to frontier in
the first place?

3. How would you decide which links already on the frontier
should be crawled next?

4. What do you need to cache per domain?
5. Will you have a blacklist?
6. Will you do language or porn detection? How?

14

The frontier

Often described as a priority queue problem.
But you have a choice when to do the priority calculations.
You can do the calculation as you add it your queue or as you
pull things off.
But what happens if you go in strict priority order?

15

Mercator
The Mercator system in 2001 by
Marc Najork and Allan Heydon
used a complex system of queues.
http://www.cs.cornell.edu/course
s/cs685/2002fa/mercator.pdf

(Please read this article.)

16

http://www.cs.cornell.edu/courses/cs685/2002fa/mercator.pdf

A simpler strategy

Assume there are a very large number of links on your frontier.

1. Randomly choose n links and rank them using whatever
information you have available.

2. Crawl the top k links.

3. Repeat.

17

Distributing your crawler

If you have n crawlers, consider a hash(URL or domain) % n to
decide what machine should crawl it.

If a given machine is crawling a URL, it should probably index it.

When a query is presented, it should be broadcast to all your
machines, which respond with results, that are merged before
reporting.

18

Agenda

1. Course details.
2. RAII.
3. The frontier.
4. Hashing.
5. The index.

19

Hashing
Create an array of
buckets to hold the
items you wish to
index based on a
key field.

Create a simple
function that can
map the key to a
bucket index.

If multiple different
keys map to the
same bucket, that’s
called a collision.

20

Search
key

Hash
function

Index to
an array
of buckets

List of
collisions

Hashing
Expensive to grow
the table or deal
with collisions, so
we make the table
pretty big.

No serious
developer would
use hashing except
when they expect
lots of entries that
don’t have to be
kept in sort order,
so there’s no point
in starting with
only two buckets.

21

Search
key

Hash
function

Index to
an array
of buckets

List of
collisions

Hashing
Start with 1024 or
4096 or some other
big power-of-two
number of buckets
that you expect
matches the
problem.

Use the low bits of
the hash function
as an index.

You may/may not
support growing
the hash table.

22

Search
key

Hash
function

Index to
an array
of buckets

List of
collisions

Hash function

Even a simple
hash can
work pretty
well.

But what’s
the problem
with this
one?

23

unsigned Hash(const char *p)
{
unsigned h = 0;
for (; *p; p++)

h = (h << 1) ^ *p;
return h;
}

Fowler-Noll-Vo hash function

A more
complex
hash
using big
prime
numbers.

24

size_t fnvHash (const char *data, size_t length)
{
static const size_t FnvOffsetBasis =

146959810393466560
static const size_t FnvPrime =

1099511628211ul;

size_t hash = FnvOffsetBasis;
for (size_t i = 0; i < length; ++i)

{
hash *= FnvPrime;
hash ^= data[i];
}

return hash;
}

Polynomial function

CRCs (cyclic redundancy codes) use shift registers.

25

Source: W. Wesley Peterson and E.J. Weldon, Jr, Error-Correcting Codes, Second
Edition, MIT Press, 1972, pp 178-179.

26

Polynomial function

27

/*

Ethernet CRC

Polynomial x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 +

x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1

Represent the polynomial as an unsigned number with each bit corresponding

to a term of the polynomial set to one. E.g., the x^5 term means bit 5

(counting from the LSB as bit 0) is on. The x^32 term is actually the

feedback term and is "off the end" of the polynomial.

*/

#define Ethernet_Polynomial 0x04c11db7

#define Poly Ethernet_Polynomial

28

/* Calculate the CRC table entries. crc(x) returns table entry x. Use this

routine to fill a table crctab[256] with the appropriate values.

*/

ulong crc(register ulong i)

{

i <<= 24;

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

i = (i << 1) ^ ((i & 0x80000000) ? Poly : 0);

return i;

}

29

static const unsigned long CRCTable[] =

{ 0x00000000, 0x04c11db7, 0x09823b6e, 0x0d4326d9,

0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005,

0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61,

0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,

0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9,

0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75,

0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011,

. . .

0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4 };

30

// To calculate a CRC, use the UpdateCRC(crc, c) procedure to

// accumulate the data into the CRC. The crc argument is the

// accumulated CRC, c is the next character of data to be added.

// Initially, crc = 0.

unsigned long UpdateCRC(unsigned long crc, unsigned char c)

{

return (((crc) << 8) ^ CRCTable[((crc) >> 24) ^ (c)]);

}

Buckets

Can either contain the object being indexed or a pointer to the
object.

If it’s the object itself, you need at least as many buckets as
objects and each bucket will be larger.

If it’s a pointer, it can be to a list.

31

Collisions

You have to assume that you will have collisions.

When searching a hash bucket, you must compare the search
keys to make sure that what you found is what you wanted.

If the key fields are long, you might decide to add a field to a
bucket entry with the complete hash of the key and compare
that before comparing the entire field.

32

Collisions

Several ways to deal with collisions.

1. Increment the bucket number modulo the number
of buckets and try there.

2. Use a second hash (or just different bits of the same
hash) and try there.

3. Create a list off each bucket.

4. Try (1) or (2) and if not successful, create list.

33

Collisions

When using a list for collisions, the insertion order
matters.

The STL map template pushes collisions onto the front
of the list.

Why did they do that and is that a good choice?

34

Collisions

If query performance is more important than build
time, collisions should be placed onto the end.

Why?

35

Collisions

If query performance is more important than build
time, collisions should be placed onto the end.

Why?

Because you expect to encounter the most frequent
terms earlier in the build and you want those at the
front.

36

Collisions

If you use a list for collisions, most people normally
think of something like a linked list.

Since you don’t know what will have to go into the list,
one way to deal with collisions by pushing new node
onto the list (or onto the end).

37

Collisions

But suppose you already know what the data looks like.

Could you use that information to build a better
performant, smaller memory footprint, more efficient
hash table to hold exactly that known data?

38

If you know the data

You might try several hash algorithms to see which
gives you the lowest rate of collisions.

You could tune the number of buckets.

You could compress the collision lists. Instead of a
linked list, it could be an array or a serialized stream.

39

Compressing the list

Buckets contain pointers or, even better, offsets into
one large contiguous buffer containing the items stored
in the hash table.

Each list is a contiguous series of bytes representing a
concatenation of the entries on a collision list.

If you only need to read them serially, no problem if the
entries vary in size, as long as you can tell them apart.

You do need to know when you’ve reached the end,
typically with a sentinel.

40

Agenda

1. Course details.
2. RAII.
3. The frontier.
4. Hashing.
5. The index.

41

Index

Basic problem: Create a merged inverted word index of all the
documents that have been crawled, allowing you to report all
the documents and individual locations (postings) where any
given word was found.

Due to the size, the posting lists will have to be on disk. For
performance, you’ll need to keep some directory and indexing
information in memory.

Master
index

A search engine index is typically a set of files

List of index
chunks

Index
chunk

Index
chunk

Index
chunk

Index
chunk…

A master index

List of URLS Inverted word index

Each index chunk

FrontierConfiguration
settings

Dictionary Posting list Posting list Posting listPosting list …

Common
Header

Type-specific
data Index Post Post Post Sentinel…

The inverted word index

A posting list

Delta from
previous

post

Type-specific
data

An individual post

Dictionary Posting list Posting list Posting listPosting list …

The inverted word index file format

Dictionary contains:
1. Number of tokens in the index.
2. Number of unique tokens in the index.
3. Number of documents in the index.
4. Hash table to translate from token to offset to the posting list.

Tokens can be decorated to distinguish words in the title vs. the body or
URL, etc., and to create special tokens, e.g., end-of-document.

Index functions

Index stream readers (ISRs)

first(t) returns the first position at which t occurs.

last(t) returns the last position at which t occurs.

next(t, current) returns the next position where t occurs
after the current position.

prev(t, current) returns the last position where t occurs
before the current position.

Numbering locations

You have a choice whether to number locations relative to:
Start of the document
Start of the index

If you go with start of document, individual word locations will
be (docid, offset) and you probably use a separate index of
documents.

If you go with start of index, a word location is simply an offset
and you probably enter document boundaries as postings.

Dictionary

Words are usually case-folded.
Special characters and numbers often discarded.
May do stemming, lemmatization and stop word elimination.
May special case certain terms, e.g., C++.
May have to word-break in some languages.

Stemming and Lemmatization

Either of these is a strategy for attempting facilitate finding close
matches where the words have similar meaning.

Stemming is an algorithmic process of replacing words with
simpler forms, e.g., with production rules to discard prefixes or
suffixes. Swim, swimmer, swimmers, swimming all reduced to
swim. Most famous is the Porter stemmer.

Lemmatization is a dictionary-based process for replacing words
with their root or lemma. Better becomes good, walking
becomes walk.

49

Dictionary

May have multiple kinds of things in the dictionary, e.g.,
document boundaries vs. words.

Each type of post may have attributes, for example:

word Bold, heading, large font.

document URL, number of word or unique words in the
URL, title, body, anchor.

May also distinguish variations on word, e.g., only in the URL vs.
only in the title, by decorating the word when entering it into
the dictionary.

Posting list

1. Huge.

2. Important to reduce space.

3. Usual strategy is to encode each new location as a delta
from the previous.

4. Further encode with varying numbers of bits depending on
the delta, e.g., as utf-8 .

5. Some number of bits may encode attributes, e.g., bold, italic.

6. Synchronization points allow seeking to a location just prior
to desired location, then scanning forward.

Things to decide
In addition to the posting list, what information will you have for each entry?
1. Number of occurrences in the corpus
2. Number of documents containing this word
What information will you keep for each index?
1. Number of documents in the corpus
2. Total number of words
3. Total number of unique words
What kinds of posts will you have and what information will each contain?
What attributes or decorations will you use?
How will you encode the location numbers?
Will you have synchronization points?

Decorating

Add characters that get stripped out during HTML parsing
to indicate special characteristics or types of posts, e.g.,

amazon amazon in the body text
#amazon amazon only in the URL
@amazon amazon only in the title
$amazon amazon only in the anchor text
% End-of-document token.

Might also be used for stemming:

swim* swim, swims, swimming, etc.

Common
Header

Type-specific
data Index Post Post Post Sentinel…

A posting list

Common header contains:
1. Number of occurrences of this token in the index.
2. Number of documents in which this token occurs.
3. Type of token: end-of-document, word in anchor, URL, title or body.

For an end-of-document list, type-specific data might include:
1. Lengths of the document, URL and title + URL.
2. Amount of anchor text, number of unique words.
3. Any additional static rank information, e.g., date, number of links pointing to

the page, etc.

Post

Post

Post

…

Sentinel

High bits of
seek location

Seek offset in
the postings

Actual location
of that post.

0000 0000 0 32

0000 0001 531 20142

0000 0010 2012 912348

: : :

Common
Header

Type-specific
data Index Post Post Post Sentinel…

A posting list

Posting list index

Seek
location

Synchronization points

Delta from
previous

post

Delta from previous post
Type-

specific
data

The offset will typically be encoded with a
variable length scheme like UTF-8.

If only a few bits of type-specific information are needed, they
can be encoded into the low bits of the UTF-8 character.

Bits … 4 3 2 1 0

00 Normal
01 Italic
10 Bold
11 Heading

Anchor text tends to duplicate, with many links to the same page with
the same anchor text.

For a word in anchor text, it can be useful to sort the phrases, retaining
only the unique phrases but with counts on the words.

Because the counts can be so large, it can be helpful to shrink the
number of bits required with the log function.

Delta from previous post log(Count)

Bits … 4 3 2 1 0

	EECS 4408 System Design of a Search Engine�Winter 2021�Lecture 10: The frontier, hashing and the index
	Agenda
	Agenda
	details
	LinuxGetUrl/Ssl
	Simple state machine
	Agenda
	RAII
	Slide Number 9
	Agenda
	Crawler
	Crawler
	The frontier
	Managing the frontier
	The frontier
	Mercator
	A simpler strategy
	Distributing your crawler
	Agenda
	Hashing
	Hashing
	Hashing
	Hash function
	Fowler-Noll-Vo hash function
	Polynomial function
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Buckets
	Collisions
	Collisions
	Collisions
	Collisions
	Collisions
	Collisions
	Collisions
	If you know the data
	Compressing the list
	Agenda
	Index
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Index functions
	Numbering locations
	Dictionary
	Stemming and Lemmatization
	Dictionary
	Posting list
	Things to decide
	Decorating
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57

